

Virginia Western Community College

MTH 267

Differential Equations

Prerequisites

Completion of MTH 264 or equivalent with a grade of C or better.

Course Description

Introduces ordinary differential equations. Includes first order differential equations, second and higher order ordinary differential equations with applications and numerical methods.

Semester Credits: 3

Lecture Hours: 3

Required Materials

Textbook:

Elementary Differential Equations & Boundary Value Problems by Boyce, DiPrima, and Meade. 12th edition.

ISBN: 9781119777694

Other Required Materials:

Click here to enter text.

Course Objectives

- First Order Differential Equations
 - Classify a differential equation as linear or nonlinear.
 - Understand and create a directional field for an arbitrary first-order differential equation.
 - Determine the order, linearity or nonlinearity, of a differential equation.
 - Solve first order linear differential equations.
 - Solve Separable differential equations.
 - Solve initial value problems.
- Numerical Approximations
 - Use the Euler or tangent line method to find an approximate solution to a linear differential equation.
- Higher Order Differential Equations
 - Solve second order homogenous linear differential equations with constant coefficients including those with complex roots and real roots.
 - Determine the Fundamental solution set for a linear homogeneous equation.
 - Calculate the Wronskian.
 - Use the method of Reduction of order.

- Solve nonhomogeneous differential equations using the method of undetermined coefficients.
- Solve nonhomogeneous differential equations using the method of variation of parameters.
- Applications of Differential Equations, Springs-Mass-Damper, Electrical Circuits, Mixing Problems
 - Solve applications of differential equations as applied to Newton's Law of cooling, population dynamics, mixing problems, and radioactive decay. (1st order)
 - Solve springs-mass-damper, electrical circuits, and/or mixing problems (2nd order)
 - Solve application problems involving external inputs (non-homogenous problems).
- Laplace Transforms
 - Use the definition of the Laplace transform to find transforms of simple functions
 - Find Laplace transforms of derivatives of functions whose transforms are known
 - Find inverse Laplace transforms of various functions.
 - Use Laplace transforms to solve ODEs.
- Systems of First-Order Linear Differential Equations
 - Find the eigenvalues and eigenvectors of a matrix
 - Solve systems of first-order linear differential equations with constant coefficients where the eigenvalues are unique, complex, or repeated.

[ADA Statement \(PDF\)](#)

[Title IX Statement \(PDF\)](#)

Textbook Topical Description

<u>Topic</u>	<u>Chapter</u>	<u>Sections</u>
Introduction to Differential Equations	1	1.1-1.3
First-Order Differential Equations	2	2.1-2.7
Second-Order Linear Differential Equations	3	3.1-3.8
Higher-Order Linear Differential Equations	4	4.1-4.3
The Laplace Transform	6	6.1-6.5
Systems of First-Order Linear Equations	7	7.1-7.8

Notes to Instructors

A comprehensive final exam will be given.