Virginia Western Community College EGR 232 Chemical Engineering Thermodynamics

Prerequisites

MTH 265 and EGR 231 (grade of C or higher in both of these courses)

Corequisites

none

Course Description

Introduces the first and second laws of thermodynamics. Examines energy conservation; concepts of equilibrium, temperature, energy, and entropy; partial molar properties; pure component and mixture equations of state; processes involving energy transfer as work and heat; reversibility and irreversibility; and closed and open systems and cyclic processes.

Semester Credits: 3 Lecture Hours: 3 Lab/Clinical/Internship Hours: 0

Required Materials

Textbooks:

Chemical, Biochemical, and Engineering Thermodynamics, 5th Edition, Stanley I. Sandler, ISBN: 978-1-119-32128-6

Other Required Materials:

Engineering paper Scientific or graphing calculator

General Course Purpose

This course prepares students for deeper study in the field of Chemical Engineering, exploring fundamental thermodynamics concepts essential in Chemical Engineering practice.

See: https://courses.vccs.edu/courses/EGR232-ChemicalEngineeringThermodynamics/detail

Course Outcomes

At the completion of this course, the student should be able to utilize the following:

- Critical Thinking
 - Critically analyze different thermodynamic processes to solve the energy inputs necessary for operation
- Quantitative Literacy
 - Solve equations of state and phase equilibrium problems using appropriate math and computational techniques
- Scientific Literacy
 - Apply basic thermodynamic principles via mass, energy and entropy balance equations to analyze open and closed systems and processes

Topical Description

- First Law of Thermodynamics Energy Balances
 - Define the types of energy (kinetic, potential, internal) and energy transfer (heat, work), formulate energy balances for closed and open systems, recognize the importance of reference states.
- Properties of Pure Substances Equations of State
 - Apply cubic equations of state, virial equations of state, and the Principle of Corresponding States to estimate properties of single component real fluids.
- Second Law of Thermodynamics Entropy
 - Calculate the entropy change for an ideal gas, apply the concept of irreversibility.
 - Utilize Mollier diagrams to calculate the entropy change for real fluids.
 - Apply entropy balances to determine thermodynamic feasibility of processes.
- Fundamental Thermodynamic Property Relationships
 - Apply fundamental property relations, Maxwell relations, and mathematical operations (e.g., chain rule, triple product rule).
 - Calculate desired property change between states using hypothetical paths.
 - Define a departure function.
- Flow Processes, Power Plants, Refrigeration and Liquefaction Cycles
 - Calculate for different working fluids the energy generated by power cycles, the energy required to operate refrigeration cycles, and the energy required to liquify gases with and without recycle.
- Phase Equilibria, Mixtures
 - Predict behavior from liquid/vapor phase diagrams, calculate vapor-liquid equilibria for single component and two component mixtures.

Notes to Instructors

- All instructors teaching this course in any given semester will use the same textbooks.
- The content of this course will be updated every few years in collaboration with engineering faculty from across the VCCS.

- ADA Statement (PDF)
- <u>Title IX Statement</u> (PDF)