Virginia Western Community College EGR 231 Mass and Energy Balances

Prerequisites

MTH 264, EGR 121, CHM 112 (grade of C or higher in these courses)

Corequisites

none

Course Description

Introduces the field of chemical engineering and how material and energy balances are applied to chemical processes, and physical and thermodynamic properties of multi-component systems.

Semester Credits: 3 Lecture Hours: 3 Lab/Clinical/Internship Hours: 0

Required Materials

Textbooks:

Elementary Principles of Chemical Processes 3rd Edition, Richard M. Felder & Ronald W. Rousseau, ISBN: 978-0471687573

Other Required Materials:

Engineering paper Scientific or graphing calculator

General Course Purpose

This course instructs future chemical engineers in integrating knowledge of chemistry, math, and physics to address real-world problems, tackling complex issues by understanding the physical context and formulating the necessary equations.

See: https://courses.vccs.edu/courses/EGR231-MassandEnergyBalances/detail

Course Outcomes

At the completion of this course, the student should be able to utilize the following:

- Civic Engagement
 - Relate chemical engineering concepts to the development and manufacturing of products highly valued by society
- Critical Thinking
 - Break complex processes into component parts
 - Establish relationships between known and unknown variables
- Professional Readiness
 - Integrate knowledge of chemistry, math, and physics to address real-world chemical engineering problems
- Quantitative Literacy
 - Analyze material and energy balances in chemical processes
 - Gather essential chemical process data and solve balances using computational methods

Topical Description

- Introduction to Chemical Engineering
 - Discuss and appreciate the variety and complexity of problems that chemical, biochemical, and process engineers are asked to solve
- Introduction to Chemical Engineering Calculations
 - Perform basic engineering calculations including converting quantities from one set of units to another
- Processes and Process Variables
 - Define, calculate and estimate properties of process materials including fluid density, flow rate, chemical composition (mass and mole fractions, concentrations), fluid pressure, and temperature
- Fundamentals of Material Balances
 - Perform material balance calculations by drawing and labeling process flowcharts from verbal process descriptions and completing degree-of-freedom analyses
 - Write and solve material and energy balance equations for single-unit and multiple-unit processes, processes with recycle and bypass, and reactive processes
- Single-Phase Systems
 - Apply the principles of physical chemistry and thermodynamics to perform pressure-volume-temperature calculations for ideal and non-ideal gasses
- Multi-phase Systems
 - Perform vapor-liquid equilibrium calculations for systems containing one condensable component and for ideal multi-component solutions
- Energy and Energy Balances
 - Use physical properties of chemical compounds e.g., melting temperature, vapor pressure, heat capacity together with materials and energy balances to solve chemical process problems
- Balances on Non-reactive Systems
 - Write and solve material and energy balance equations for non-reactive processes
- Balances on Reactive Systems
 - Write and solve material and energy balance equations for reactive processes

Notes to Instructors

- All instructors teaching this course in any given semester will use the same textbooks.
- The content of this course will be updated every few years in collaboration with engineering faculty from across the VCCS.

ADA Statement (PDF) Title IX Statement (PDF)