Virginia Western Community College ETR 113 D.C. and A.C. Circuit Fundamentals I

Prerequisites

MTE 1, 2 and 3.

Course Description

ETR 113 DC and AC Fundamentals I (4 CR). Studies DC and AC circuits, basic electrical components, instruments, network theorems, and techniques used to predict, analyze and measure electrical quantities. Lecture 3 hours. Laboratory 3 hours. Total 6 hours per week.

Course credits: 4 cr. Lecture Hours: 3 Lab Hours: 3

Required Materials

Text:

<u>Circuit Analysis Theory and Practice</u>, 5th Edition, Author: Allen H. Robbins and Wilhelm C. Miller Thomson, Publisher: Delmar Learning. ISBN: 9781133281009

Other Required Materials:

Software:

- 1) OrCad PSpice 9.1 with Schematic Capture
- 2) ETCAI Circuits Challenge.

These will be discussed in the first class meeting.

Scientific Calculator. TI-30 or equivalent is recommended. A TI-89, or equivalent, calculator is recommended for EET students or those who will be taking ETR 114.

Course Outcomes

At the end of the semester, the student will be able to:

- 1. Explain electrical terminology and define electrical quantities including current, voltage, resistance, power, energy, efficiency, capacitance, inductance, reactance, impedance.
- 2. Explain and use Ohm's Law, Kirchoff's Voltage and Current Laws, voltage divider rule, current divider rule, Faraday's law, and Lenz's law
- 3. Analyze series, parallel and series-parallel circuits, both DC and AC, including an introduction to multiple-source DC circuits. Use of computer software to solve problems will be introduced.
- 4. Measure electrical quantities.
- 5. Demonstrate proficiency and teamwork skills in the laboratory.

VIRGINIA WESTERN COMMUNITY COLLEGE School of Science, Technology, Engineering and Mathematic (540)-857-7273

Topical Description

Course Outline:

Class	<u>Topic</u>	Text Reference
1	 Campus Safety, Course Policies and Administrative Stuff. Units and Notation Lab–Math Review/Units Conversion/Introduction to ETCAI software 	Chapters 1 and 2 (Partial)
2	 Atomic Structure Electrical Units (Voltage, Current, Resistance, Power, Conductance) Conductors, Semiconductors, and Insulators. Effects of Temperature on Conductors Types of Resistors (thermistors, photoresistors, etc.) 	Chapter 2 (cont'd) Chapter 3 (Partial)
3	 6. Lab–Resistance Measurement. 1. Ohm's Law and Power 2. Energy and Efficiency 3. Circuit Breakers & Fuses 4. Lab–Ohm's Law / intro to MicroSim Pspice Software 	Chapter 4 (Partial)
4	 Test #1 Series Circuits Kirchoff's Voltage Law Voltage Divider Rule Lab-Series Circuits 	Chapter 5
5	 Parallel Circuits Kirchoff's Current Law Current Divider Rule Lab-Parallel Circuits 	Chapter 6
6	 Test #2 Series-Parallel Circuits Applications Troubleshooting Lab-Series-Parallel Circuits #1 	Chapters 7

VIRGINIA WESTERN COMMUNITY COLLEGE School of Science, Technology, Engineering and Mathematic (540)-857-7273

7	Series-Parallel Circuits #2 Lab–Series-Parallel Circuits Problem Lab with Pspice	Chapter 7 (cont'd)
8	Introduction to Network Analysis More Problems!!!	Chapter 8
9	Test #3 Lab–Mesh and Nodal Lab	Chapter 8 (cont'd)
10	Capacitance Lab–Capacitor Time Constant and Reactance	Chapter 10 and 1 (Partial)
11	Magnetism Inductance Lab–Magnetism/Inductance Demonstration	Chapter 12 and 13 (Partial)
12	Alternating Current and Voltage Lab–Oscilloscope Usage	Chapter 15 (Partial) Handout
13	 AC Circuit Analysis I Lab–AC Circuits (RLC) 	Chapter 16 (Partial) Handout
14	 AC Circuit Analysis II AC Power Lab–AC Induction Motor Power Factor 	Chapter 16 and 17 (Partial) Take Notes!
15	Supplemental Topics/Review for final exam	TBA
16	Final Exam	

Notes to Instructors

1. Suggested Grading Scheme:

Scheduled Tests 55% Labs and Homework 25% Comprehensive Final Exam 20%

Grading Scale: A = 91 - 100

B = 81 - 90 C = 71 - 80 D = 60 - 70F = below 60

- 2. Recommended lab materials, sample tests and supplemental handouts are available from the program head.
- 3. Instructors should notify the program head at least a day in advance for any special accommodations or materials that will be needed for class.

