Virginia Western Community College MDL 237 Clinical Bacteriology

COURSE OUTLINE

Prerequisites:

N/A

Course Description:

Teaches handing, isolation, and identification of pathologic bacteria. Emphasizes clinical techniques and associate bacteria with clinical symptoms.

Semester Credits: 4 Lecture Hours: 2 Lab/Recitation Hours: 3

Required Materials:

Textbooks: <u>Textbook of Diagnostic Microbiology 5th edition</u> by C.R. Mahon, et al.

ISBN: 978-0-323-08989-0

<u>Laboratory Manual for Microbiology Fundamentals: A Clinical Approach, Second Edition</u> by Steven Obenauf and Susan Finazzo, McGraw-Hill Education, ISBN: 978-1-259-29386-3

Course Outcomes:

At the completion of this course, the student should be able to:

- Perform a gram stain of samples containing bacteria to aid in a presumptive identification
- Plate biological samples containing bacteria onto the proper media and be able to identify the purpose of various selective media
- Identify bacteria by their colony characteristics and growth on selective media
- Identify bacteria by using biochemical testing methods and molecular testing methods such as PCR and DNA fingerprinting
- Understand the mechanism of action of common antibiotics and the basis of antibiotic resistance
- Describe and differentiate the characteristics of the various species of pathogenic bacteria including the staphylococci, streptococci, and enterococci, and be able to differentiate one species from another such as *Staphlococcus aureus* and *S. epidermidis*
- Learn proper isolation techniques for aerobic vs. anaerobic and facultative anaerobic bacteria
- Isolate and successfully identify pathogenic fungi and various non-bacterial pathogens such as Mycoplasma and Ureaplasma
- Understand the theory behind automated techniques of bacterial identification
- Recognize how pre-analytical, analytical, and post analytical errors can adversely affect results

Topics

I. Bacterial Cell Structure, Physiology, Metabolism, and Genetics

- A. Significance
- B. Overview of the Microbial World
- C. Classification/Taxonomy
 - Nomenclature
 - Classification by Phenotypic and Genotypic Characteristics
 - Classification by Cellular Type: Prokaryotes, Eukaryotes, and Archaeobacteria
- D. Comparison of Prokaryotic and Eukaryotic Cell Structure
- E. Bacterial Morphology
 - Microscopic Shapes
 - Common Stains Used for Microscopic Visualization
- F. Microbial Growth and Nutrition
 - Environmental Factors Influencing Growth
 - Bacterial Growth
 - Fermentation and Respiration
 - Biochemical Pathways from Glucose to Pyruvic Acid
 - Anaerobic Utilization of Pyruvic Acid (Fermentation)
 - Aerobic Utilization of Pyruvate (Oxidation)
 - Carbohydrate Utilization and Lactose Fermentation
- G. Bacterial Genetics -Genetic Elements and Alterations
 - Mechanisms of Gene Transfer

II. The Laboratory Role in Infection Control

- A. General Concepts in Infection Prevention and Control Practice
 - Frequently Identified Microbes
 - Outbreak Investigation
 - Steps of an Outbreak Investigation
 - Investigation Support from the Laboratory
 - Environmental Culturing
 - Infection Prevention and Control Education
- B. Emerging and Reemerging Pathogens
 - Examples of Emerging and Reemerging Pathogens
 - Response Plans

III. Performance Improvement in the Microbiology Laboratory

- A. General Guidelines for Establishing Quality Control
 - Temperature
 - Thermometer Calibration
 - Media Quality Control
 - Reagent Quality Control
 - Antimicrobial Susceptibility Control

- Personnel Competency
- Use of Stock Cultures
- Quality Control Manual
- B. Performance Improvement
 - Vision and Mission Statements
 - Indicators of Performance Improvement: Process vs. Outcome
 - Establishing Performance Monitors
 - Problem-Action Form
 - Fixing the Process
 - Benchmarking
 - Commercially Purchased Monitors
- C. Analytic Analysis of Tests
 - Analytic Sensitivity and Specificity
 - Accuracy
- D. Clinical Analysis of Tests
 - Clinical or Diagnostic Sensitivity
- E. Operational Analysis of Tests
 - Predictive Values of Tests
 - Efficiency of Tests
- F. Choosing a Laboratory Method
- G. Test Validation

IV. Specimen Collection and Processing

- A. Basic Principles of Specimen Collection
 - Collection Procedures
 - Patient-Collected Specimens
 - Labeling and Requisitions
 - Safety
- B. Preservation, Storage and Transport of Specimens
 - Specimen Storage
 - Preservatives and Anticoagulants
 - Holding of Transport Media
 - Shipping Infectious Substances
- C. Specimen Receipt and Processing
 - Specimen Priority
 - Rejection of Unacceptable Specimens
 - Macroscopic and Microscopic Evaluation
 - Primary Inoculation
 - Specimen Preparation
 - Isolation Techniques
 - Incubation
- D. Culture Workup

- Nonroutine Specimens
- E. Communication of Laboratory Findings

V. Microscopic Examination of Materials from Infected Sites

- A. Preparation of Samples
 - Smears from Swabs
 - Smears from Thick Liquids or Semisolids
 - Smears form Thick, Granular or Mucoid Materials
 - Smears from Thin Fluids
 - Cytocentrifuge Preparations
- B. Stains
- C. Microscopes
- D. Examination of Prepared Material
 - Characterization of Background Materials
 - Search for Microorganisms
 - Evaluation of Choice of Antibiotic
 - Initiation of Special Handling for Unsuspected or Special Pathogens
- E. Grading or Classifying Materials
 - Contaminating Materials
 - Local Materials
 - Purulence
 - Mixed Materials
- F. Reports of Direct Examinations
- G. Examples of Sample Observations and Reports
 - Quality Control in Direct Microscopic Interpretation

VI. Use of Colony Morphology for the Presumptive Identification of Microorganisms

- A. Importance of Colonial Morphology as a Diagnostic Tool
- B. Initial Observation and Interpretation of Cultures
- C. Gross Colony Characteristics Used to Differentiate and Identify Microorganisms
- Hemolysis
- Size
- Form or Margin
- Elevation
- Density Color
- Consistency
- Pigment
- Odor
- D. Colonies with Multiple characteristics
- E. Growth of Organisms in Liquid Media

VII. Biochemical Identification of Gram Negative Bacteria

A. Carbohydrate Utilization

- Oxidation Fermentation Tests
- Triple Sugar Iron Agar
- $\bullet \ Ortho-Nitrophenyl-\beta-D-Galactopyranoside \ Test$
- B. Glucose Metabolism and Its Metabolic Products
- Methyl Red Test
- Voges-Proskauer Test
- C. Amino Acid Utilization
- Decarboxylase and Dihydrolase Tests
- Deaminase Test
- D. Miscellaneous Tests
 - Citrate Utilization
 - DNase
 - Gelatin Liquefaction
 - Indole Production
 - Malonate Utilization
 - Motility
 - Nitrate and Nitrate reduction
 - Oxidase
 - Urease
 - Lysine Iron Agar Slant
 - Motility-Indole-Ornithine Agar
 - Sulfide-Indole-Motility Agar
 - D. Manual Multitest Systems
 - Principles of Identification
 - Analytical Profile Index
- E. Rapid and Automated Identification Systems
 - Rapid Biochemical Tests Performed on Isolated Colonies
 - Identification Systems Relying on Carbohydrate Utilization or Chromogenic Substrates
 - Automated Identification Systems
 - Evaluation of Identification Systems

VIII. Applications of Molecular Diagnostics

- A. Nucleic Acid Hybridization Techniques
 - Hybridization Reaction Variables
 - Hybridization Formats
 - Applications of Nucleic Acid Hybridization Techniques
- B. Nucleic Acid Amplification Procedures
 - Polymerase Chain Reaction
 - Other Nucleic Acid Amplification Reactions
- C. Strain Typing and Identification
 - Nonamplified Typing Methods
 - Amplified Typing Methods

- D. Future of Molecular Diagnostics Testing in the Clinical Microbiology Laboratory
 - Sequencing
 - Pyrosequencing
 - DNA Microarrays and Nanoarrays
 - Proteomics
 - MALDI-TOF Mass Spectrometry
- E. Nanomedicine

IX. Antimicrobial Agent Mechanisms of Action and Resistance

A. Antibiotic Targets and Mechanisms of Action

- Inhibition of Bacterial Cell Wall Biosynthesis
- Inhibition of Folate Synthesis
- Interference with DNA Replication
- Interference with DNA Transcription
- Interference with mRNA Translation
- Origins of Antibiotic Resistance
- Acquired Mechanisms of Resistance
- B. Dissemination
- C. Nanotechnology to Deliver Therapeutic Agents

X. Antimicrobial Susceptibility Testing

A. Reasons and Indications for Performing Antimicrobial Susceptibility Tests

- Factors to Consider When Determining Whether Testing is Warranted
- B. Selecting Antimicrobial Agents for Testing and Reporting
 - Selection of Test Batteries
 - Reporting of Susceptibility Test Results
- C. Traditional Antimicrobial Susceptibility Testing
 - Inoculum Preparation and Use of McFarland Standards
 - Dilution Susceptibility Testing Methods
 - Disk Diffusion Testing
 - Modified Methods for Testing Slow-Growing or Fastidious Bacteria
 - Additional Organism and Antimicrobial Agent Testing Concerns
- D. Automated Antimicrobial Susceptibility Test Methods
 - Principles of Technologies Used
 - Currently Available Automated Systems
 - Nonautomated Antimicrobial Susceptibility Test Methods: Etest
- E. Interpretation of In Vitro Antimicrobial Susceptibility Test Results
- F. Methods of Detecting Antimicrobial-Inactivating Enzymes
 - β-Lactamase Tests
- G. Quality Control of Antimicrobial Susceptibility Tests
- H. Selecting an Antimicrobial Susceptibility Test Method
- I. Susceptibility Testing Challenges
 - Rapid Susceptibility Determination

- J. Special Antimicrobial Susceptibility Tests
 - Minimum Bactericidal Concentration Test
 - Controlling Test Variables
 - Time-Kill Assays
 - Synergy Tests
 - Serum Bactericidal Test
 - Molecular Probes for Identifying Determinants of Antimicrobial Resistance
 - Measurement of Antimicrobial Agents in Serum and Body Fluids

XI. The Staphylococci

A. General Characteristics

- B. Clinically Significant Species
 - Staphylococcus epidermidis
 - Staphylococcus saprophyticus
 - Staphylococcus lugdunesis
 - Other Coagulase Negative Staphylococcus
- C. Laboratory Diagnosis
 - Specimen Collection and Handling
 - Microscopic Examination
 - Isolation and Identification
 - Rapid Methods of Identification
- D. Antimicrobial Susceptibility
 - Methicillin-Resistant Staphylococci
 - Vancomycin-Resistant Staphylococci
 - Macrolide Resistance

XII. Streptococcus, Enterococcus, and Other Catalase-Negative Gram-Positive Cocci

- A. General Characteristics
 - Cell Wall Structure
 - Hemolysis
- B. Clinically significant Streptococci and Streptococcus-like Organisms
 - Streptococcus pyogenes
 - Streptococcus agalactiae
 - Groups C and G Streptococci
 - Streptococcus pneumoniae
 - Viridans Streptococci
 - Streptococcus-like Organisms
- C. Laboratory Diagnosis
 - Classification Schemes
- D. Noncultural Identification
- E. Susceptibility Testing

XIII. Aerobic Gram-Positive Bacilli

A. Non-Spore-Forming, Nonbranching Catalase Positive Bacilli

- Corynebacterium
- Rothia
- Related Genera and Undesignated CDC Corynebacterium Groups
- B. Non-Spore-Forming, Nonbranching Catalase Negative Bacilli
 - Erysipelothrix rhusiopathiae
 - Arcanobacterium
 - Gardinerella vaginalis
- C. Non-Spore-Forming, Branching Aerobic Actinomycetes
 - Nocardia
 - Other Actinomycetes

D. Spore-Forming, Nonbranching Catalase-Positive Bacilli

- Bacillus anthracis
- Bacillus cereus
- Other *Bacillus* species

XIV. Neisseria Species and Moraxella catarrhalis

- A. Pathogenic *Neisseria* Species
 - Virulence Factors
 - Neisseria gonorrhoeae
 - Neisseria meningitides
- B. Commensal Neisseria Species
 - Neisseria cinerea
 - Neisseria flavescens
 - Neisseria lactamica
 - Neisseria mucosa
 - Neisseria polysaccharea
 - Neisseria sicca
 - Neisseria subflava
 - Neisseria elongata
 - Neisseria weaver

XV. Haemophilus and Other Fastidious Gram-Negative Bacilli

- A. Haemophilus
 - General Characteristics
 - Haemophilus influenza
 - Infections Associated with Other Haemophilus Species
 - Laboratory Diagnosis
- B. HACEK Group
 - Aggregatibacter aphrophilius
 - Aggregatibacter actinomycetemcomitans
 - Cardiobacterium hominus
 - Eiknella corrodens
 - Kingella

- C. Capnocytophaga
- D. Pasteurella
- E. Brucella
- F. Franciella
- G. Legionella
 - Clinical Significance
 - Virulence Factors
 - Infections Caused by Legionella
 - Epidemiology
 - Laboratory Diagnosis
 - Specimen Collection and Handling
 - Microscopic Examination
 - Isolation and Identification
 - Serologic Testing
- H. Bordetella
 - Clinically Significant Species
 - o Bordetella pertussis
 - Bordetella parapertussis
 - o Miscellaneous species
 - Laboratory Diagnosis
 - Specimen Collection and Handling
 - Nucleic Acid Detection
 - Microscopic Examination
 - Isolation and Identification
 - Serologic Testing
 - Antimicrobial Susceptibility

XVI. Enterobacteriaceae

- A. General Characteristics
 - Microscopic and Colony Morphology
 - Classification
 - Virulence and Antigenic Factors
 - Clinical Significance
- B. Opportunistic Members of the Family Enterobacteriaceae and Associated Infections
 - Escherichia coli
 - Klebsiella and Raoutella
 - Enterobactor, Cronobacter, and Pantoea
 - Serratia
 - Proteus
 - Morganella
 - Providencia
 - Edwardsiella
 - Erwinia and Pectobacterium

- Citrobacter
- C. Primary Intestinal Pathogens of the Family Enterobacteriaceae
 - Salmonella
 - Shigella
 - Yersinia
- D. Other Genera of the Family Enterobacteriaceae
 - Budivicia
 - Buttiauxella
 - Cedecea
 - Ewingella
 - Kluyvera
 - Leclercia
 - Leminorella
 - Moellerella
 - Obesumbacterium
 - Photorhabdus
 - Rahnella
 - Tatumella
 - Trabulsiella
 - Yokenella
- E. Laboratory Diagnosis of Enterobacteriaceae
 - Specimen Collection and Transport
 - Isolation and Identification
 - Screening Stool Cultures for Pathogens
 - Serologic Grouping

XVII. Vibrio, Aeromonas, Plesiomonas, and Campylobacter Species

A. Vibrio

- General Characteristics
- Vibrio cholera
- Vibrio parahaemolyticus
- Vibrio vulnificus
- Vibrio alginolyticus
- Laboratory Diagnosis
- B. Aeromonas
 - General Characteristics
 - Clinical Manifestations
 - Laboratory Diagnosis
 - Antimicrobial Susceptibility
- C. Plesiomonas
 - Epidemiology
 - Clinical Manifestations

- General characteristics
- Laboratory Diagnosis
- Antimicrobial Susceptibility
- D. Campylobacter and Campylobacter-Like Species
 - Epidemiology
 - Clinical Manifestations
 - Laboratory Diagnosis
 - Antimicrobial Susceptibility

XVIII. Nonfermenting and Miscellaneous Gram-Negative Bacilli

- A. General Characteristics of Nonfermenters
 - Clinical Infections
 - Biochemical Characteristics and Identification
 - Pseudomonas Fluorescent Group
 - Acinetobacter
 - Stenotrophomonas maltophilia
 - Burkholderia
 - Moraxella, Oligella, and Psychrobacter
- B. Less Commonly Encountered Nonfermentative, Gram-Negative Bacilli
 - Alcaligenes and Achromobacter
 - Brevundimonas
 - CDC Groups EO-3. EO-4, and Paracoccus
 - Chromobacterium
 - Comamonas and Delftia
 - Flavobacteriaceae
 - Methylobacterium and Roseomonas
 - Ralstonia and Cupriavidus
 - Shewanella
 - Sphingomonas

XIX. Anaerobes of Clinical Importance

- A. Important Concepts in Anaerobic Bacteriology
 - Anaerobes Defined
 - Why Some Organisms Are Anaerobes
 - Where Anaerobes Are Found
 - Anaerobes at Specific Anatomic Sites
 - Factors That Predispose Patients to Anaerobic Infections
 - Indications of Anaerobe Involvement in Human Disease
- B. Frequently Encountered Anaerobes and Their Associated Diseases
 - Gram-Positive Spore-Forming Anaerobic Bacilli
 - Gram-Positive Non-Spore Forming Bacteria
 - Anaerobic Gram-Negative Bacilli

- C. Specimen Selection, Collection, Transport, and Processing
 - Specimen Quality
 - Processing Clinical Samples for Recovery of Anaerobic Pathogens
- D. Procedures for Identifying Anaerobic Isolates
 - Preliminary Procedures
 - Indications of the Presence of Anaerobes in Cultures
 - Presumptive Identification of Clinically Significant Anaerobes
 - Definitive Identification of Anaerobic Isolates
 - Identification of Clostridium Species
 - Identification of Anaerobic Non-Spore-Forming, Gram-Positive Bacilli
 - Identification of Anaerobic Gram-Negative Bacilli
 - Identification of Anaerobic Cocci
- E. Antimicrobial Susceptibility Testing
 - Problems in Susceptibility Testing of Anaerobic Isolates
- F. Treatment of Anaerobe-Associated Diseases
 - Surgical Therapy
 - Hyperbaric Oxygen
 - Antimicrobial Therapy
 - Antitoxins

XX. The Spirochetes

A. Leptospires

- General Characteristics
- Virulence Factors and Pathogenicity
- Infections Caused by Leptospires
- Epidemiology
- Laboratory Diagnosis
- Antimicrobial Susceptibility
- Clinically Significant Species
- Borrelia recurrentis and Similar Borreliae
- Borrelia burgdorferi
- B. Treponemes
 - General Characteristics
 - Clinically Significant Species
 - Treponema pallidum Subsp. pallidum
 - Other Treponemal Diseases

XXI. Mycoplasma and Ureaplasma

- A. General Characteristics
- **B.** Clinical Infections
 - Mycoplasma pneumoniae
 - Mycoplasma hominus and Ureaplasma Species

- C. Laboratory Diagnosis
 - Specimen Collection and Transport
 - Direct Examination
 - Culture
- D. Antimicrobial Susceptibility
- E. Interpretation of Laboratory Results

XXII. Mycobacterium tuberculosis and Nontuberculous Mycobacteria

A. Clinical Significance of the Mycobacterium tuberculosis Complex

- Mycobacterium tuberculosis
- Mycobacterium bovis
- Rapidly Growing Species
- B. Mycobacterium leprae
- C. Isolation and Identification of the Mycobacteria
 - Laboratory Safety Considerations
 - Specimen Collection
 - Digestion and Decontamination of Specimens
 - Staining for Acid-Fast Bacilli
 - Culture Media and Isolation Methods
 - Laboratory Identification
- D. Susceptibility Testing of Mycobacterium tuberculosis
- E. Immunodiagnosis of Mycobacterium tuberculosis Infection
 - Skin Testing
 - Serology

XXIII. Medically Significant Fungi

- A. General Characteristics
 - Yeast vs. Molds
 - Hyaline vs. Phaeoid
 - Dimorphism and Polymorphism
 - Reproduction
- B. Taxonomy
 - Mucorales
 - Ascomycota
 - Basidiomycota
 - Fungi Imperfecti
- C. Mycoses
 - Superficial mycosis
 - Cutaneous mycosis
 - Subcutaneous mycosis
 - Systemic Mycosis
- D. Clinically Significant Species
 - Agents of Superficial Mycosis

- Agents of Cutaneous Mycosis
- Agents of Subcutaneous Mycosis
- Agents of Systemic Mycosis
- Agents of Opportunistic Mycosis
- Agents of Yeast Infections
- Pneumocystis Infection
- E. Laboratory Diagnosis of Fungi
 - Specimen Collection, Handling, and Transport
 - Direct Microscopic Examination of Specimens
 - Isolation Methods
 - Identification of Fungi
- F. Immunodiagnosis of Fungal Infections
- G. Antifungal Susceptibility
 - Antifungal Agents
 - Antifungal Susceptibility Testing

Laboratory Topics

- 1. Laboratory Safety
 - Safety requirements for VWCC Microbiology Lab
 - Clinical Lab Safety
- 2. Basic Techniques I
 - Use of the Microscope
 - Survey of the Microbial World
 - o Protozoa
 - o The Fungi
 - Motility: Hanging Drop Method
- 3. Basic Techniques II
 - Aseptic Technique
 - Isolation Streak Plate
- 4. Staining Techniques I
 - Introduction to Staining
 - Negative Stain
 - Capsule Stain
 - Gram Stain
- 5. Staining Techniques II
 - Acid-fast Stain
 - Endospore Stain

- 6. Media: Enriched, Differential and Selective
 - Blood Agar
 - Mannitol Salt Agar
 - EMB Agar
 - MacConkey Agar

7. Growth

- Standard Plate Count
- Osmotic Growth
- Hydrolytic Enzymes
 - o Catalase, Oxidase, Coagulase, Gelatin Hydrolase
- 8. Biochemical Testing
 - Phenol red Broth
 - Triple-Sugar Iron Agar
 - IMViC (Indole, Methyl Red, Voger-Proskauer, Citrate) Reactions
 - Urease Test
- 9. Control of Microbial Growth
 - Antimicrobial Susceptibility Testing
 - Hand Washing
- 10. Diagnostic Testing
 - Rapid Strep Test
- 11. Identifying Microbes
 - EnteroPluri- Test (or equivalent)
 - Isolation Streak Plate
- 12. Identification of Unknown Bacteria

Notes to Instructors: