Virginia Western Community College ETR-114 D.C. & A.C. Fundamentals II

Prerequisites

Prerequisite: ETR 113. Prerequisite or co-requisite: MTH 115.

Course Description

Studies DC and AC circuits, basic electrical components, instruments, network theorems, and techniques used to predict, analyze and measure electrical quantities. Also included: basic electrical components, measuring instruments, network theorems, and techniques used to predict analyze and measure electrical quantities.

Semester Credits: 4 Lecture Hours: 3 Lab/Recitation Hours: 3

Required Materials

Textbook:

<u>Circuit Analysis Theory and Practice</u>, 5th Edition, Author: Allen H. Robbins and Wilhelm C. Miller, Thomson, Publisher: Delmar Learning, ISBN# 9781133281009.

Other Required Materials:

- 1. Scientific Calculator (Will be discussed during first class period.)
- 2. Safety Glasses. Safety glasses must be worn in the laboratory when constructing circuits or taking measurements.
- 3. Electronic Kit and personal soldering equipment.

VIRGINIA WESTERN COMMUNITY COLLEGE School of Science, Technology, Engineering and Mathematics 3097 Colonial Ave. SW Roanoke, VA 24015

Supplementary Materials (Provided to Student):

1. Various handouts and other references will be used—make sure you attend class and get handouts.

2. Software: 1) MicroSim Pspice with Schematic Capture 2) ETCAI Circuits Challenge

Course Outcomes

At the completion of this course, the student should be able to:

- 1. Define electrical quantities including current, voltage, resistance, power, energy, efficiency, capacitance, inductance, reactance, impedance
- 2. Explain and use Ohm's Law, Kirchoff's voltage and current Laws, voltage divider rule, current divider rule, Faraday's law, and Lenz's law
- 3. Analyze series, parallel and series-parallel circuits and complex (multiple source circuits with interdependency), both DC and AC.
- 4. Measure electrical quantities.
- 5. Demonstrate proficiency and teamwork skills in the laboratory.
- 6. Acquire basic soldering and

Topical Description

<u>Week</u>	Topic	Text Reference
1. 1/7-11	Course Introduction, Policies, Rules, Safety, Evacuation, etc.	Chapter 9
	Superposition Theorem, DC Circuits	
	Lab: Superposition	
2. 1/14-18	Thevenin and Norton Theorems, DC Circuits	Chapter 9
	Lab: Thevenin and Norton Theorem Problem	
3. 1/21-25	Thevenin, Norton, and Maximum Power Transfer Theorem, DC	Chapter 9
	Lab: Thevenin and Norton	

VIRGINIA WESTERN COMMUNITY COLLEGE School of Science, Technology, Engineering and Mathematics (540)-857-7273

THOUSE VIRGINIA

4. 1/28-2/1	Mesh and Nodal, DC Circuits	Chap. 8 and
	Lab: Mesh, DC Circuits	Mesh-Nodal
5. 2/4-2/8	Mesh and Nodal, DC Circuits	Handout Chapter 8
J. 2/4-2/0	· ·	Chapter 6
6. 2/11-15	Lab: Nodal, DC Circuits	Chantar 11
6. 2/11-15	Test#1 (Chapters 8 and 9)	Chapter 11 (Partial)
7 0/40 00	Capacitive Transients	` ,
7. 2/18-22	Inductive Transients	Chapter 14
	Lab: Capacitive and Inductive Transient Lab	(Partial)
8. 2/25-3/1	RLC Elements and Impedance Concepts, Phasors, and j Operator	Chapter 16
	Lab: Problem Lab	
9. 3/4 – 3/8	Spring Break	
10. 3/11-15	AC Series-Parallel Circuits	Chapter 18
	Lab: Series RC and RL Problem Labs	
11. 3/218-	Test#2 (Chapters 11, 14, and 16)	
3/22	AC Series-Parallel Circuits	Chapter 18
	Lab: RCL PSpice Analysis of AC circuits Lab	
12. 3/25-	AC Power – Real, Reactive, and Apparent Power	Chapter 17
3/29	Lab: AC Power Problem Lab	
13. 4/1-4/5	AC Power – Real, Reactive, and Apparent Power	Chapter 17
	Lab: Power Factor Correction Problem Lab	
14. 4/8-4/12	Introduce Student Projects	Project
	Soldering	Handouts
15. 4/15-	Test#3 (Chapters 17 and 18)	Project
4/19	Individual Student Project	Handouts
16. 4/22-	Individual Student Project	
4/26	Exam Review	
17. 4/30	Final Exam: 10 a.m. Tuesday, April 30	

Notes to Instructors

1. A comprehensive final should be give worth 20% of the course grade.

TOTAL STREET, STREET,