Virginia Western Community College MTH 265 Calculus III

Prerequisites

Completion of MTH 264 or equivalent with a grade of C or better.

Course Description

Focuses on extending the concepts of function, limit, continuity, derivative, integral and vector from the plane to the three dimensional space. Covers topics including vector functions, multivariate functions, partial derivatives, multiple integrals and an introduction to vector calculus. Features instruction for mathematical, physical and engineering science programs.

Semester Credits: 4

Lecture Hours: 4

Required Materials

Textbook:

University Calculus. Hass, Weir \& Thomas. 3rd edition. Pearson/Addison-Wesley. ISBN: 9780321999580.

Other Required Materials:

Click here to enter text.

Course Outcomes

At the completion of this course, the student should be able to:

- Calculate the dot and cross products.
- Graph quadric surfaces and conic sections.
- Use the rectangular, polar, cylindrical, and spherical coordinate systems.
- Analyze and apply vector-valued and parametrized functions, employing their related theorems to describe motion in space, based upon tangent and normal vectors and the principles of curvature.
- Find and interpret the rate of change of a function of several variables.
- Find and interpret gradients and directional derivatives of functions of several variables.
- Express and evaluate area using double integrals in either rectangular or polar coordinate systems.
- Express and evaluate the volume, mass, etc. of a surface using triple integrals.
- Convert and integrate in either the rectangular, spherical, or the cylindrical systems.
- Compute line integrals for both scalar and vector valued functions.
- Apply Green's Theorem and Stoke's Theorem
- Evaluate Surface Integrals and interpret flux of a vector field.
- Find and interpret the divergence and curl of a vector-valued function.

Topical Description

Sections	Topics
Vectors and the Geometry of Space	
Three-Dimensional Coordinate Systems	
Vectors	
The Dot Product	
The Cross Product	
Lines and Planes in Space	
Cylinders and Quadric Surfaces	
Vector-Valued Functions and Motion in Space	
Curves in Space and Their Tangents	
Integrals of Vector Functions; Projectile Motion	
Arc Length in Space	
Curvature and Normal Vectors of a Curve	
Tangential and Normal Components of Acceleration	
Partial Derivatives	
Functions of Several Variables	
Limits and Continuity in Higher Dimensions	
Partial Derivatives	
The Chain Rule	
Directional Derivatives and Gradient Vectors	
Tangent Planes and Differentials	
Extreme Values and Saddle Points	
Lagrange Multipliers	
Multiple Integrals	
Double and Iterated Integrals over Rectangles	
Double Integrals over General Regions	
Area by Double Integration	
Double Integrals in Polar Form	
Triple Integrals in Rectangular Coordinates	
Moments and Centers of Mass	
Triple Integrals in Cylindrical and Spherical Coordinates	
Substitutions in Multiple Integrals	
Integrals and Vector Fields	
Line Integrals	
Vector Fields and Line Integrals: Work, Circulation, and Flux	
Path Independence, Conservative Fields, and Potential Functions	
Green's Theorem in the Plane	
Surfaces and Area	
Surface Integrals	
Stoke's Theorem	
The Divergence Theorem and a Unified Theory	

Vectors and the Geometry of Space
Three-Dimensional Coordinate Systems
Vectors
The Dot Product
The Cross Product
Lines and Planes in Space
Cylinders and Quadric Surfaces
Vector-Valued Functions and Motion in Space
Curves in Space and Their Tangents
Integrals of Vector Functions; Projectile Motion
Arc Length in Space
Tangential and Normal Components of Acceleration
Partial Derivatives
Functions of Several Variables
Limits and Continuity in Higher Dimensions
Partial Derivatives
The Chain Rule

Tangent Planes and Differentials
Extreme Values and Saddle Points
Lagrange Multipliers
Multiple Integrals
Double and Iterated Integrals over Rectangles
Double Integrals over General Regions
Area by Double Integration
Double Integrals in Polar Form
Triple Integrals in Rectangular Coordinates
Moments and Centers of Mass
Triple Integrals in Cylindrical and Spherical Coordinates
Substitutions in Multiple Integrals
Integrals and Vector Fields
Line Integrals
Vector Fields and Line Integrals: Work, Circulation, and Flux
Path Independence, Conservative Fields, and Potential Functions
Green's Theorem in the Plane
Surfaces and Area
Surace Theore
The Divergence Theorem and a Unified Theory

Notes to Instructors

1. A comprehensive final exam will be given.
