MTH 264 Revised: Fall 2020

Virginia Western Community College MTH 264 Calculus II

Prerequisites

Completion of MTH 263 or equivalent with a grade of C or better.

Course Description

Continues the study of calculus of algebraic and transcendental functions including rectangular, polar, and parametric graphing, indefinite and definite integrals, methods of integration, and power series along with applications. Designed for mathematical, physical, and engineering science programs.

Semester Credits: 4 Lecture Hours: 4

Required Materials

Textbook:

University Calculus. Hass, Weir & Thomas. 3rd edition. Pearson/Addison-Wesley. ISBN: 9780321999580.

Course Outcomes

At the completion of this course, the student should be able to:

- Solve appropriate applied problems from the area of science and engineering.
- Evaluate improper integrals.
- Integrate transcendental functions.
- Find area and volume of solids of revolution.
- Use the rectangular and polar coordinate systems including finding area, lengths, and graphing.
- Graph, evaluate, differentiate, integrate and define parametrized functions and applications.
- Determine whether an infinite series is convergent or divergent.
- Find the radius of convergence of a Taylor Series.
- Use Maple to solve integral calculus problems and applications.

Topical Description

Topic	Chapter	Section
Application of Integrals	6	6.1, 6.2, 6.5, 6.6
Disk, Washer, Shell		
Applications to Physics		
Techniques of Integration	8	8.1-8.4
Integration of Parts		
Partial Fractions		
Trig Integrals		
Trig Substitution		
Numerical Integration and Improper Integrals	8	8.5-8.7
Sequences and Series, tests for convergence	9	9.1-9.10

MTH 264 Revised: Fall 2020

Infinite Series Tests for Convergence/Divergence		
Power, Taylor, MacLaurin, and Binomial series		
Parametric Equations and Polar Coordinates	10	10.1-10.5
Polar Coordinates and Graphing		
Parametric Equations		
Calculus with Parametric Equations		

Maple Labs (To Be Determined)

- 1. Introduction Lab
- 2. Project 1: Solids of Revolution
- 3. Project 2: Numerical Integration
- 4. Project 3: Centroids

Notes to Instructors

- 1. Listing of all topics.
 - 6 Applications of Definite Integrals
 - 6.1 Volumes Using Cross-Sections
 - 6.2 Volumes Using Cylindrical Shells
 - 6.3 Arc Length
 - 6.4 Areas of Surfaces of Revolution
 - 6.5 Work
 - 6.6 Moments and Centers of Mass
 - 7 Integrals and Transcendental Functions
 - 7.1 The Logarithm Defined as an Integral
 - 7.2 Exponential Change and Separable Differential Equations
 Techniques of Integration
 - 8 Integration by Parts
 - 8.1 Trigonometric Integrals
 - 8.2 Trigonometric Substitutions
 - 8.3 Integration of Rational Functions by Partial Fractions
 - 8.4 Integral Tables and Computer Algebra Systems
 - 8.5 Numerical Integration
 - 4.5 Indeterminate Forms and L'Hôpital's Rule
 - 8.6 Improper Integrals
 - 8.7 Infinite Sequences and Series
 - 9 Sequences
 - 9.1 Infinite Series
 - 9.2 The Integral Test
 - 9.3 Comparison Tests
 - 9.4 The Ratio and Root Tests
 - 9.5 Alternating Series, Absolute and Conditional Convergence

MTH 264 Revised: Fall 2020

- 9.6 Power Series
- 9.7 Taylor and Maclaurin Series
- 9.8 Convergence of Taylor Series
- 9.9 The Binomial Series and Applications of Taylor Series
- 9.10 Parametric Equations and Polar Coordinates
- 10 Parametrizations of Plane Curves
- 10.1 Calculus with Parametric Curves
- 10.2 Polar Coordinates
- 10.3 Graphing in Polar Coordinates
- 10.4 Areas and Lengths in Polar Coordinates
- 10.5 Areas and Lengths in Polar Coordinates
- 2. Maple labs are optional; however, there should be some kind of "project" given."