Virginia Western Community College MDL 260 Laboratory Instrumentation

Prerequisites

BIO 101 and BIO 141 or equivalent.

Course Description

Teaches the theory, principles of operation, methodologies, maintenance, and troubleshooting of the more common instrumentation used in the clinical laboratory.

Semester Credits: 2

Lecture Hours: 1

Lab/Clinical/Internship Hours: 0

Required Materials

Textbook:

TBD

Possibly a combination of

- Chapters from textbooks utilized in prior courses along with current literature
- Applicable sections from Henry's Clinical Diagnosis and Management by ...
- Clinical Laboratory Instrumentation and Automation: Principles, Applications, and Selection 1st Edition. Kory M. Ward PhD MT(ASCP) (Author), Craig A. Lehmann PhD CC(NRCC) (Author), Alan M. Leiken PhD (Author)

Supplementary Materials:

Course Outcomes

At the completion of this course, the student should be able to:

- Have an understanding of the clinical laboratory instrumentation basic theory and application.
- Apply knowledge from theories and methodologies to understand the principles of operation of currently and routinely used analyzers in clinical laboratories.
- Understand safety relating to laboratory instrumentation.
- Understand specimen requirements and processing.
- Understand equipment preventative maintenance, quality control and requirements for quality assurance.

- Apply knowledge and be able to perform basic maintenance on clinical laboratory analyzers.
- Apply knowledge and be able to understand requirements for procurement, installation, qualification/ validation and equipment upgrades.
- Understand and discuss error detection and troubleshooting for common clinical laboratory analyzers

Topical Description

Part 1: Background and History

- Safety
- General Laboratory Equipment and Reagents
- Specimen Requirements and Processing
- Overview of Laboratory Instruments
- Overview of Instrumentation Methodologies

Part 2: Testing Methodologies

- Spectrophotometry
- Reflectometry
- Molecular Luminescence Spectrophotometry Fluorometry
- Nephelometry and Turbidimetry
- Refractometry
- Osmometry
- Flow Cytometry
- Electrochemistry
- Conductance
- Elecrophoresis and Densitometry
- Impedance
- Isoelectric Focusing
- Chromatography
- Mass Spectrometry
- Scintillation Counter
- Capillary Electrophoresis
- Nuclear Magnetic Resonance

Part 3: Automation

• Principles and Components of Automation

Part 4: Additional Topics

- Error Detection and Troubleshooting Instrumentation
- Instrumentation Efficiency and Cost
- Emerging Technologies

Note to Instructors