Revised Fall 2016

EGR 255 Electric Circuits Laboratory

COURSE OUTLINE

Prerequisites:

MTH 176 and MTH 178

Co-requisite:

EGR 251 – Basic Electric Circuits I

Course Description:

Teaches principles and operation of laboratory instruments such as VOM, electronic voltmeters, digital multimeters, oscilloscopes, counters, wave generators and power supplies. Presents application to circuit measurements, including transient and steady-state response of simple networks with laboratory applications of laws and theories of circuits plus measurement of AC quantities.

Semester Credits: 1 Credit Lecture Hours: 0 Hours Lab/Recitation Hours: 3 Hours

Course Outcomes

At the completion of this course, the student should be able to:

- 2. Proper use of test equipment.
- Know basic circuit variables and associated units.
- 4. Know and apply Kirchhoff's and Ohm's laws.
- 5. Use parallel and series equivalents to analyze resistive circuits.
- 6. Analyze, design, and use voltmeters, ammeters, and ohmmeters.
- 7. Understand and apply node-voltage and mesh-current circuit analysis.
- 8. Find Thevenin and Norton equivalent circuits.
- 9. Analyze circuits containing dependent sources.
- 10. Analyze and design circuits containing operational amplifiers.
- 11. Understand energy storage elements: inductors and capacitors.
- 12. Analyze and design simple first- and second-order circuits.
- 13. Understand the properties of sinusoidal signals and phasors.
- 14. Analyze steady-state ac circuits.
- 15. Use PSpice to simulate electric circuits

Required Materials:

- <u>Each</u> student <u>must</u> have a laboratory parts kit. The kit contains electronic parts for each lab, basic tools, a breadboard trainer, a multimeter, and a software oscilloscope. A site has been established by Electronix Express for all parts (<u>except</u> the sound card oscilloscope for \$33.95 do <u>not</u> buy this) at http://elexp.com/virwestern.htm. The correct oscilloscope kit is made by Velleman (model PCSGU250) also available from Electronix Express (see http://elexp.com/tst_u250.htm) or others. (<u>Be sure to check the pricing on this item</u>.)
- 2. Scientific Calculator (i.e. TI-89 Calculator)

Textbooks:

<u>Lab-in-a-Box</u>, 3e Edition Revised, by Robert W. Hendricks and Kathleen Meehan, 2011. John Wiley and Sons, Inc., Hoboken, NJ.

<u>Electric Circuits</u>, 10th Edition, Revised Printing by James W. Nilsson, 2015, Pearson Prentice Hall, Inc., Upper Saddle River, N.J.

The following supplementary materials are available:

- 1. PSpice Circuit Analysis software
- 2. Microsoft Word and Excel Software
- 3. Matlab Software

Topical Description:

Week	Topic ¹	Text ²
1	Exp. 1 - Breadboard Basics	Chapter 1
2	Exp. 3 – Ohm's Law	Chapter 2.2
3	Exp. 4 – Kirchhoff's Laws	Chapter 2.4
4	Exp. 5 – Series and Parallel Circuits	Chapter 3.1-3.2
5	Exp. 6 - Voltage and Current Dividers	Chapter 3.3-3.4
6	Exp. 7 – Delta-Wye Configuration	Chapter 3.7
7	Exp. 8 – Mesh-Current and Node- Voltage Analysis	Chapter 4.1-4.8
8	Exp. 9 – Superposition and Thevenin Equivalent	Chapter 4.10- 4.13
9	Exp. 11 – An Inverting Amplifier Circuit	Chapter 5.1-5.3
10	Exp. 12 – A Non-Inverting Amplifier Circuit	Chapter 5.1-5.3
11	Exp Introduction to the Oscilloscope	Chapter 3 ¹
12	Exp. 14 – A Series RC Circuit	Chapter 7.2-7.4
13	Exp. 22 – Introduction to Phasors	Chapter 9.1-9.3
14	Exp. 24 – Using Nodal or Mesh Analysis to Solve AC Circuits	Chapter 9.8-9.9

¹Experiments in <u>Lab-in-a-Box</u> text.

²Chapters from <u>Electric Circuits</u> text.

Notes to Instructors:

- 1. Students must be quickly informed of the laboratory equipment requirements so that parts/equipment can be ordered and received by the first lab. Because of this lead time, a back-up plan to provide resources for the first lab must be in place.
- 2. Laboratory safety must be covered before beginning the laboratory sessions.
- 3. Labs should cover the major course topics.
- 4. Labs should be introduced as closely as possible to the relevant lecture material.

