COURSE OUTLINE

Co-requisites:

MTH 116 or equivalent

Course Description:

Introduces computers, their architecture and software. Teaches program development using flowcharts. Solves engineering problems involving programming in languages such as FORTRAN, PASCAL, or C++. Lecture 3 hours per week.

Course Goals and Objectives:

- 1. Introduce computer architecture
- 2. Examine the evolution of computer software languages
- 3. Introduce the steps in program development
- 4. Examine the basic structures of computer programming
- 5. Introduce object-oriented programming
- 6. Develop a working knowledge of C++ and its application to engineering problem solution

Semester Credits: 3 Credits Lecture Hours: 3 Hours Lab/Recitation Hours: 0 Hours

Course Outcomes

At the completion of this course, the student should be able to:

- 1. Understand basic computer architecture
- 2. Understand basic binary mathematics
- 3. Examine the range of computer programming languages
- 4. Understand the professional computer software design process
- 5. Understand and use the tools available for computer software programming
- 6. Understand and use computer software programming structures including class structures in C++
- 7. Write C++ programs using its range of programming structures
- 8. Debug C++ programs
- 9. Understand how to translate engineering applications into C++ programs

Required Materials:

Textbook, Microsoft Word and Dev-C++ Editor/Compiler

Textbook:

<u>C++ for Engineers and Scientists</u>, 4th Edition, ISBN-13: 978-1-133-18784-4 (ISBN-10: 1-133-18784-6)

The following supplementary materials are available:

- 1. Dev-C++ (5.0 beta 9.2 (4.9.9.2)(9.0MB) with Mingw/GCC 3.4.2) available on line and in computer labs
- 2. Word software available in computer labs (.doc or .docx files)

Topical Description:

Week	Topic	Text	Tests
1	Preliminaries	Chapter 1	
2	Problem Solving Using C++	Chapter 2	
3	Assignment, Formatting, and Interactive Input	Chapter 3	
4	Selection Structures	Chapter 4	Test 1
5	Repetition Statements	Chapter 5	
6	Modularity Using Functions	Chapter 6	
7	Arrays	Chapter 7	
8	I/O Streams and Data Files	Chapter 8	Test 2
9	Completing the Basics	Chapter 9	
10	Pointers	Chapter 10	
11	Introduction to Classes	Chapter 11	
12	Adding Functionality to Your Classes	Chapter 12	Test 3
13	Structures	Chapter 13	
14	Bit Operations	Chapter 15 (online)	
15	Review		
	FINAL EXAM		

Notes to Instructors:

- 1. This course includes a capstone software project for all students.
- 2. Three tests and a final exam are provided.
- 3. Software exercises are performed in class during the semester to emphasize major software topics.
- 4. Homework is submitted electronically to Blackboard on a weekly basis.

