Cover Page

PHY241 University Physics I

Faculty Name: Yangsoo Kim

Program Head: Yangsoo Kim	
	Dean's Review:

VIRGINIA WESTERN COMMUNITY COLLEGE PO Box 14007 Roanoke, VA 24038 (540)-857-7273

Dean's Signature: ______Date Reviewed: ___/__/

Revised: Fall 2016

PHY241 University Physics I

COURSE OUTLINE

Pre and co-requisites:

MTH173 pre-requisite and MTH174 co-requisite.

Course Description:

Teaches principles of classical and modern physics. Includes mechanics, wave phenomena, heat, electricity, magnetism, relativity, and nuclear physics. Prerequisite for PHY 241--MTH 173 or MTH 273 or divisional approval. Prerequisite for PHY 242--MTH 174 or MTH 274 or divisional approval. Part I of II.

Lecture 3 hours. Laboratory 3 hours. Total 6 hours per week. 4 credits

University Physics I, PHY241

Course Objectives

At the completion of this course, the student should be able to:

- 1. Understand the equations of motion in one and two or tree dimension and apply the equations of motion to predict the position and the velocity of an object from the initial condition.
- 2. Understand the Newton's laws of motion and many types of force and set up equations using Newton's 2nd law in order to find the acceleration of objects for linear and circular motion.
- 3. Understand work and kinetic & potential energy as well as conservation of energy and find the speed using conservation of energy.
- 4. Explain momentum, impulse and collisions.
- 5. Solve problems about dynamics of rotational motion by apply Newton's 2nd law in rotational form.
- 6. Understand and solve the problems regarding fluid mechanics, gravitation, and periodic motion.
- 7. Solve problems involving temperature & heat, thermal property of matter and ideal gas equation.

8. Have the understanding of the first and second laws of thermodynamics and their application.

University Physics I, PHY241

Required Materials:

A calculator for exams and laboratory works

Textbook:

<u>University Physics</u>, Young and Freedman, 14th edition, Pearson (ISBN 9780321973610) with Mastering Physics

University Physics I, PHY241

Topical Description

Chapter 1		Units, physical Quantities, and Vectors
Chapter	2	Motion Along a Straight Line
Chapter	3	Motion in Two or Three Dimensions
Chapter	4	Newton's Laws of Motion
Chapter	5	Applying Newton's Laws
Chapter	6	Work and Kinetic Energy
Chapter	7	Potential Energy and Energy conservation
Chapter	8	Momentum, Impulse, and Collision
Chapter	9	Rotation of Rigid Bodies
Chapter	10	Dynamics of Rotational Motion
Chapter	11	Equilibrium
Chapter	12	Fluid Mechanics
Chapter	13	Gravitation
Chapter	14	Periodic Motion
Chapter	17	Temperature and Heat
Chapter	18	Thermal Properties of Matter

Chapter 19 The First Law of Thermodynamics

Chapter 20 The Second Law of Thermodynamics

University Physics I, PHY241

Lab Schedule

Lab	1	Introduction. Safety and Significant Figures. Fitting curves.
Lab	2	Free Fall
Lab	3	Projectile motion
Lab	4	Addition of Force: Vector
Lab	5	Static and Kinetic friction
Lab	6	Newton's 2nd Law
Lab	7	Energy conservation
Lab	8	Ballistic pendulum
Lab	9	Torque and Moment of Inertial
Lab	10	Angular momentum conservation
Lab	11	Hooke's Law and Simple Harmonic Motion
Lab	12	Archimedes' Principle

