ETR-114 D.C. & A.C. Fundamentals II

COURSE OUTLINE

Prerequisites:

Prerequisite: ETR 113. Prerequisite or co-requisite: MTH 115.

Course Description:

This course covers basic concepts and theory used to analyze and measure electrical quantities for D.C. and A.C. circuits. Also included: basic electrical components, measuring instruments, network theorems, and techniques used to predict analyze and measure electrical quantities. Course credit: 4 Credit-hours consisting of 3 lecture hours and 3 lab hours per week.

Semester Credits: 4 hours, Lecture Hours: 3 hours, Lab/Recitation Hours: 3 lab hours

Course Outcomes

At the completion of this course, the student should be able to:

- 1. Define electrical quantities including current, voltage, resistance, power, energy, efficiency, capacitance, inductance, reactance, impedance
- 2. Explain and use Ohm's Law, Kirchoff's voltage and current Laws, voltage divider rule, current divider rule, Faraday's law, and Lenz's law
- 3. Analyze series, parallel and series-parallel circuits and complex (multiple source circuits with interdependency), both DC and AC.
- 4. Measure electrical quantities.
- 5. Demonstrate proficiency and teamwork skills in the laboratory.
- 6. Acquire basic soldering and electronic component assembly skills.

Required Materials:

- 1. Scientific Calculator (Will be discussed during first class period.)
- 2. Safety Glasses. Safety glasses must be worn in the laboratory when constructing circuits or taking measurements.
- 3. Electronic Kit and personal soldering equipment.

Textbook:

<u>Circuit Analysis Theory and Practice</u>, 5th Edition, Allen H. Robbins and Wilhelm C. Miller, Thomson Delmar Learning, ISBN 13: 9781133281009.

Supplementary Materials (Provided to Student):

- 1. Various handouts and other references will be used—make sure you attend class and get handouts.
- 2. Software: 1) MicroSim Pspice with Schematic Capture 2) ETCAI Circuits Challenge

Course Outline:		
Week	<u>Topic</u>	Text Reference
1. 1/7-11	Course Introduction, Policies, Rules, Safety, Evacuation, etc. Superposition Theorem, DC Circuits	Chapter 9
2. 1/14-18	Lab: Superposition Thevenin and Norton Theorems, DC Circuits Lab: Thevenin and Norton Theorem Problem	Chapter 9
3. 1/21-25	Thevenin, Norton, and Maximum Power Transfer Theorem, DC Lab: Thevenin and Norton	Chapter 9
4. 1/28-2/1	Mesh and Nodal, DC Circuits Lab: Mesh, DC Circuits	Chap. 8 and Mesh- Nodal Handout
5. 2/4-2/8	Mesh and Nodal, DC Circuits Lab: Nodal, DC Circuits	Chapter 8
6. 2/11-15	Test#1 (Chapters 8 and 9) Capacitive Transients	Chapter 11 (Partial)
7. 2/18-22	Inductive Transients Lab: Capacitive and Inductive Transient Lab	Chapter 14 (Partial)
8. 2/25-3/1	RLC Elements and Impedance Concepts, Phasors, and j Operator Lab: Problem Lab	Chapter 16
9. 3/4 - 3/8	Spring Break	
10. 3/11-15	AC Series-Parallel Circuits Lab: Series RC and RL Problem Labs	Chapter 18
11. 3/218-3/22	Test#2 (Chapters 11, 14, and 16)AC Series-Parallel CircuitsLab: RCL PSpice Analysis of AC circuits Lab	Chapter 18
12. 3/25-3/29	AC Power – Real, Reactive, and Apparent Power Lab: AC Power Problem Lab	Chapter 17
13. 4/1-4/5	AC Power – Real, Reactive, and Apparent Power Lab: Power Factor Correction Problem Lab	Chapter 17
14. 4/8-4/12	Introduce Student Projects Soldering	Project Handouts
15. 4/15-4/19	Test#3 (Chapters 17 and 18) Individual Student Project	Project Handouts
16. 4/22-4/26	Individual Student Project Exam Review	
17. 4/30	Final Exam: 10 a.m. Tuesday, April 30	

Etr-114, Section-11 D.C. & A.C. Fundamentals II

Notes to Instructors (List information about optional topics, departmental exams, etc)

(N.A)

