Revised Fall 2016

Faculty Name: Kelly Yohe

Program Head: R. J. Crawford

Dean's Review:

Dean's Signature: _____ Date Reviewed: __/__/___

COURSE OUTLINE

Prerequisites:

MTE 1, 2 and 3.

Course Description:

ETR 113 DC and AC Fundamentals I (4 CR). Prerequisite: MTE 1, 2 and 3. Studies DC and AC circuits, basic electrical components, instruments, network theorems, and techniques used to predict, analyze and measure electrical quantities. Lecture 3 hours. Laboratory 3 hours. Total 6 hours per week.

Course credits: 4 cr. Lecture Hours: 3 Lab Hours: 3

Course Outcomes

At the end of the semester, the student will be able to:

- 1. Explain electrical terminology and define electrical quantities including current, voltage, resistance, power, energy, efficiency, capacitance, inductance, reactance, impedance.
- 2. Explain and use Ohm's Law, Kirchoff's Voltage and Current Laws, voltage divider rule, current divider rule, Faraday's law, and Lenz's law
- 3. Analyze series, parallel and series-parallel circuits, both DC and AC, including an introduction to multiple-source DC circuits. Use of computer software to solve problems will be introduced.
- 4. Measure electrical quantities.
- 5. Demonstrate proficiency and teamwork skills in the laboratory.

Required Materials:

Text: <u>Circuit Analysis Theory and Practice</u>, 5th Edition, Allen H. Robbins and Wilhelm C. Miller, Thomson Delmar Learning. ISBN: 9781133281009

Software:

1) OrCad PSpice 9.1 with Schematic Capture

2) ETCAI Circuits Challenge.

These will be discussed in the first class meeting.

Equipment: Scientific Calculator. TI-30 or equivalent is recommended. A TI-89, or equivalent, calculator is recommend for EET students or those who will be taking ETR 114.

Textbook: <u>Circuit Analysis Theory and Practice</u>, 5th Edition, Allen H. Robbins and Wilhelm C. Miller, Thomson Delmar Learning. ISBN: 9781133281009

Topical Description:

Course Outline:

<u>Class</u>	Topic	Text Reference
1	 Campus Safety, Course Policies and Administrative Stuff. Units and Notation Lab–Math Review/Units Conversion/Introduction to ETCAI software 	Chapters 1 and 2 (Partial)
2	 Atomic Structure Electrical Units (Voltage, Current, Resistance, Power, Conductance) 	Chapter 2 (cont'd)
	 Conductors, Semiconductors, and Insulators. Effects of Temperature on Conductors Types of Resistors (thermistors, photoresistors, etc.) Lab–Resistance Measurement. 	Chapter 3 (Partial)
3	 Ohm's Law and Power Energy and Efficiency Circuit Breakers & Fuses Lab–Ohm's Law / intro to MicroSim Pspice Software 	Chapter 4 (Partial)
4	 Test #1 Series Circuits Kirchoff's Voltage Law Voltage Divider Rule Lab–Series Circuits 	Chapter 5
5	 Parallel Circuits Kirchoff's Current Law Current Divider Rule Lab–Parallel Circuits 	Chapter 6
6	1. Test #2	Chapters 7

	 Series-Parallel Circuits Applications Troubleshooting Lab–Series-Parallel Circuits #1 	
7	 Series-Parallel Circuits #2 Lab–Series-Parallel Circuits Problem Lab with Pspice 	Chapter 7 (cont'd)
8	 Introduction to Network Analysis More Problems!!! 	Chapter 8
9	 Test #3 Lab–Mesh and Nodal Lab 	Chapter 8 (cont'd)
10	 Capacitance Lab–Capacitor Time Constant and Reactance 	Chapter 10 and 1 (Partial)
11	 Magnetism Inductance Lab–Magnetism/Inductance Demonstration 	Chapter 12 and 13 (Partial)
12	 Alternating Current and Voltage Lab–Oscilloscope Usage 	Chapter 15 (Partial) Handout
13	 AC Circuit Analysis I Lab–AC Circuits (RLC) 	Chapter 16 (Partial) Handout
14	 AC Circuit Analysis II AC Power Lab–AC Induction Motor Power Factor 	Chapter 16 and 17 (Partial) Take Notes!
15 16	1. Supplemental Topics/Review for final exam Final Exam	ТВА

Notes to Instructors

1.	Suggested Gradi Scheduled Tests Labs and Homew Comprehensive I	55% 25% 20%	
	Grading Scale:	A = 91 - 100 B = 81 - 90 C = 71 - 80 D = 60 - 70 F = below 60	

- 2. Recommended lab materials, sample tests and supplemental handouts are available from the program head.
- 3. Instructors should notify the program head at least a day in advance for any special accommodations or materials that will be needed for class.

PO Box 14007 Roanoke, VA 24038 (540)-857-7273

VIRGINIA WESTERN COMMUNITY COLLEGE