Revised Fall 2016

Faculty Name:	R. J. Crawford		
Program Head:	R. J. Crawford		
		Dean's Review:	

VIRGINIA WESTERN COMMUNITY COLLEGE PO Box 14007 Roanoke, VA 24038 (540)-857-7273

Dean's Signature: ______Date Reviewed: ___/__/

COURSE OUTLINE

Prerequisites: ETR 114

Course and Description:

ELE 226, Electrical Power and Control Systems (3 CR) Prerequisite: ETR 114. Studies the theory and operation of rotating machines, transformers, AC power distribution and control systems used in industrial applications. Lecture 2 hours. Laboratory 2 hours. Total 4 hours per week.

Course credits: 3 cr. Lecture Hours: 2 Lab Hours: 2

Course Outcomes

At the completion of this course, the student should be able to:

- 1. Identify the parts of the following equipment and explain their purpose:
 - a) AC Power Systems
 - b) AC Motors
 - c) Transformers
 - d) Alternators
- 2. Explain:
 - a) Power generation concepts.
 - b) The speed/torque relationships for AC motors
 - c) How each basic motor and generator connection functions
 - d) The assorted power losses that occur in AC machines
 - e) Assorted types of AC motor control
 - f) The function of NEC and NEMA
 - g) The basic operating principles of single-phase and three-phase motors
 - h) The various single-phase and three-phase transformer connections
 - i) The three-phase motor equivalent circuit
 - i) The transformer equivalent circuit
- 3. Perform assorted calculations as assigned using the hand calculator
- 4. Work proficiently and observe all safety precautions in the electrical machines laboratory.

Required Materials:

Textbook: Herman, Stephen L., <u>Electrical Transformers and Rotating Machines 3rd Edition</u>, Thompson Delmar Publishers, ISBN 978-1-1110-3913-4.

Equipment:

- 1. Scientific Calculator, TI-89 or equivalent.
- 2. Safety Glasses. These must be worn in the laboratory when operating machinery.

Supplemental Materials:

The following supplementary materials will be made available:

- Various handouts and other references will be used—make sure you attend class and get these handouts.
- 2. Software: 1) MicroSim Pspice.

Course Topics:

Week	Topics/Activities	Reference
1	Class Policies, Safety, etc. 1) Unit 1: Magnetism 2) Laboratory: View Safety Videos 3) Assignment: Read Units 1 and 2 and answer review questions Units 1 and 2.	Unit 1
2	 Unit 2: Magnetic Induction Laboratory: Problem Lab Assignment: Read Unit 3 and answer review questions Unit 3. 	Unit 2
3	 Unit 3:Inductance in Alternating Current Circuits Lab: Power Factor Correction Problem Lab Assignment: Read Unit 4 and answer review questions Unit 4. 	Unit 3
4	 Unit 4: Single-Phase Isolation Transformers Transformer Problems Laboratory: Transformers Assignment: Read Unit 5 and answer review questions Unit 5. 	Unit 4
5	 Unit 5: Autotransformers Laboratory: Autotransformer Problems Assignment: Read Unit 6 and answer review questions Unit 6. 	Unit 5
6*	 Unit 6: Current Transformers Laboratory: Current Transformer Problems Assignment: Read Unit 7 and answer review questions. 	Unit 6
7	 Test #1 (Units 1-6) Unit 7: Three-Phase Circuits Laboratory: Three-Phase Problems Assignment: Read Unit 8 and answer review questions. 	Unit 7
8	 Unit 7: Three-Phase Circuits (continued) Unit 8: Three-Phase Transformers Laboratory: Direction of Rotation for Assorted Motors Assignment: Read Unit 9 and answer review questions. 	Units 7-8

9	 Unit 8: Three-Phase Transformers (continued) Unit 9: Single-Phase Loads for Three-Phase Transformers Laboratory: Three-Phase Transformers Assignment: Read Units 10 answer review questions. 	Units 8-9
10	 Unit 9 (Single-Phase Loads for Three-Phase Transformers) Unit 10: Transformer Installation Laboratory: Units 9 and 10 Problems Assignment: Read Units 11 and 12 and answer review questions. 	Units 9, 10, 11, and 12
11	 Test #2 (Units 6 – 12) Alternators (Unit 16) and Three-Phase Motors (Unit 17) Lab: Demonstrate Paralleling Three-Phase Alternator Assignment: Read Units 16-17 and answer review questions. 	Units 16-17
12	 Unit 17: Three-Phase Motors (continued) Lab: Three-Wire Motor Control Assignment: Read Unit 18 and answer review questions 	Unit 17
13	 Unit 18: Single-Phase AC Motors Lab: Single-Phase Motors Assignment: Read Unit 19 and 20. Answer review questions. 	Unit 18
14	 Test #3, Take Home Test, (Units 16 – 20) Unit 19: Motor Maintenance and Troubleshooting Unit 29: Motor Installation Lab: Testing Motor Windings 	Unit 19-20
15	 Lab: Wire Sizing Review for Final Exam 	Handouts
16	Final Exam	

Notes to Instructors

1. Suggested Grading Scheme:

Scheduled Tests 55% Labs and Homework 25% Comprehensive Final Exam 20%

Grading Scale: A = 91 - 100

B = 81 - 90 C = 71 - 80 D = 60 - 70F = below 60

- 2. Recommended lab materials, sample tests and supplemental handouts are available from the program head.
- 3. Instructors should notify the program head at least a day in advance for any special accommodations or materials that will be needed for class.

