

WE'LL TAKE YOU THERE

SCHOOL OF SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

CAD 241

Revised Spring 2019

CAD 241 Parametric Solid Modeling I

Prerequisites:

CAD 111 - Technical Drawing I

Course Description:

Focuses on teaching students the design of parts by parametric solid modeling. Topics covered include, but are not limited to, sketch profiles; geometric and dimensional constraints; 3-D features; model generation by extrusion, revolution and sweep; and the creation of 2-D drawing views that include sections, details and auxiliary. Part I of II. (Credit will not be awarded for both CAD 241 and DRF 241.)Lecture 2 hours. Laboratory 2 hours. Total 4 hours per week. Course applies the theory and application of industry standards; Course utilizes AutoDesk CAD software and AutoDesk Certification materials.

Required Materials:

Textbook:

Autodesk Inventor 2019 and Engineering Graphics, An Integrated Approach Randy H. Shih 978-1-63057-202-0

Recommended additional Materials:

USB portable, Stapler, Pencil Sharpener

To complete assignments outside the classroom, the student will need access to a current computer and a high-speed internet service and media player.

The following supplementary materials are available:

VWCC offers an open computer lab format available throughout each semester if needed. AutoDesk provides each student with access to a downloadable full version of the AutoCad program. The student can download the program onto their personal computer from the storage site provided.

SCHOOL OF SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

Course Outcomes:

- A. Knowledge of 3D techniques in design and manufacturing
- B. Knowledge of Sketching geometry with constraints, tolerances, and dimensions
- C. Knowledge of the introduced CAD software, including the interface and environment.
- D. Create base features and placed features, and use modification tools.
- E. Create solid models using adaptive and parametric 3D tools
- F. Understand "design intent" and "reverse engineering" to create models from existing parts.
- G. Create 2D detailed production drawings with industry standard ASME dimensions from 3D parametric parts.
- H. Create assemblies using multiple parts and assembly constraints
- I. Create exploded assemblies from presentation file.

Topical Description:

Week	Topics
1	Welcome, Review Syllabus and course materials, Warm up Exercise, ASME Dimensions,
	Sketching, and Detailed Drawings; Project 1 Introduction "Design Intent"
2	Industry Standards, Detailed Drawings Review, 3rd Angle Projection, Warm up
	Exercise, ASME Dimension Review, Review Applications
3	TEST 1 – ASME Dimensions, Industry Standards and Basic 3D
4	Introduction to AutoDesk INVENTOR; Interface, Inventor Sketching/Features
	Design; Constraints; Extrude; Project 1 review
5	Basics Modifications, Placed Features vs. Sketched Features
6	Basics Modifications, Placed Features vs. Sketched Features
7	Additional modeling techniques, 2D Drawing Views: Drawing Sheets, Adding ASME
	dimensions to Drawing Views
8	Project 1 Due; Special Group Project 2 Introduction "Reverse Engineering", Review
	Applications
9	Test 2, Project 2 Object approval due; Project 2 work
10	Assemblies and Presentation files; Project 2 continued
11	Advanced modeling applications, Project 2 continued
12	Advanced modeling applications, Project 2 continued
13	Project 2 - Putting it all together, Presentation files
14	Project 2 continued
15	Project 2 continued
16	Final Exam, Project 2 Presentation to class

SCHOOL OF SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS

Notes to Instructors:

- Usage of ASME industry standards for dimensions is required
- Each student will be required to complete weekly in-class assignments, out of class assignments and special projects for class presentation.
- (Inventor) ACU Certification materials used in course materials.