Prerequisites:

ETR113, ETR114 or equivalent

Co-Requisites:

None

Course Description: Teaches theory and application of amplifiers and oscillators. Includes amplifier circuit configurations, amplifier classes, operational amplifiers, power amplifiers, bandwidth distortion, and principles of feedback.

Course credits: 4 cr. Lecture Hours: 3 Lab Hours: 3 Total 6 hours per week.

Course Objectives:

When the student has successfully completed this course, he or she will be able to:

- 1. Discuss the nature of semiconductor materials.
- 2. Identify and analyze the operation of power supply circuits and components.
- 3. Analyze and discuss the operation and biasing of semiconductor devices.
- 4. Analyze and discuss circuits using bipolar transistors, field-effect transistors, and op-amps.
- 5. Explain and analyze the operation of circuits using negative feedback.
- 6. Construct electronic circuits in the lab and use the voltmeter and oscilloscope to analyze and verify operation.
- 7. Use PSPICE to simulate and analyze electronic circuit performance.

Required Materials:

- Text: Thomas L. Floyd and David M. Bushla, <u>The Science of Electronics Analog Devices</u>. Copyright © 2005 by Pearson/Prentice-Hall, Inc. ISBN: 0-13-087540-6
- 2. Scientific Calculator
- 3. Software: PSPICE v9.1 Student
- 4. Software: ETCAl v55. Components for project

Supplemental Materials:

1. Handouts for certain topics

Course Content:

Week #	Class	Topic	(Ch -Section)
1	1	Introduction, Course Policies and Administrative Stuff	Chapter 1
	2	Semiconductor Physics, P-N Junction Diodes	(2-1,2-2)
		Lab: Chapter 1 Problems	
2	3	Diode Types, Biasing and Characteristics, and misc. applications	(2-3,2-4)
	4	Power Supply Rectifier Types, filtering, and Regulation	(2-5,2-6,2-7)
		Lab: Diodes	
3	5	Test #1 - Chapters 1-2 (Available in the LTC for Hybrid Students)	
	6	Bipolar Junction Transistors—Specifications, Testing, Biasing and Stability	(3-1,3-2, 3-6)
		Lab: Transistor Biasing	
4	7	Small-Signal Amplifier Concepts—Common-Emitter (CE) Amplifiers, Linearit	(3-3,3-4)
	8	Other Transistor Amplifier Configurations (CC, CB),	(3-4)
		Lab: Common Emitter Amplifiers	
	9	Transistor as a Switch	(3-5)
5	10	Field-Effect Transistor (FET) Types, Characteristics and Biasing	(4-1 to 4-5)
		Lab: Transistor Switches and Attenuators	
	11	FET Amplifiers and Switches	(4-6,4-7)
6	12	Multistage Amplifiers—Coupling Methods, Class of Operation, and Efficien	(5-1 to 5-3)
		Lab: JFET Common-Source Amplifier	
	13	Push-Pull and Complementary-Symmetry Power Amplifiers. Other misc. Am	(5-4,5-5)
7	14	RF and Differential Amplifiers	(5-5,5-6)
		PSpice Lab: Complementary-Symmetry Amplifier	
8	15	Test #2 - Chapters 3, 4, and 5	
0	16	Intro to Operational Amplifiers (Op-Amps), differential amplifiers, Specs.	(6-1, 6-2, 6-3)
	17	Negative Feedback, Inverting and Non-Inverting Amplifiers, Characteristics	(6-4, 6-5)
9	18	Op-Amp Comparators and Summing Amplifiers and Other Circuits	(7-1 to 7-5)
		Lab: Inverting and Non-Inverting Amplifiers	
10	19	Active Filters—Overview	Chapter 8
	20	Oscillators — Overview	Chapter 10
		Lab: Op-Amp Oscillator	

Course Content:

Week #	Class	Topic	(Ch -Section)
11	21	Test #3 - Chapters 6, 7, 8, 10	
	22	Voltage Regulators—Overview ONLY	Chapter 11
12	23	Measurement and Control Circuits—Transducers	12-1–12-2
	24	Measurement and Control Circuits (cont'd)—Applications	12-3-12-5
		Lab: IC Voltage Regulator	
13	25	Power Control Devices (Thyristors) and Circuits	(12-6)
	26	Project Kickoff	
		Lab: SCR and TRIAC Testing	
14	27	Project	
	28	Project	
15	29	Project	
	30	Present Project/Exam Review	
16	31	Final Exam	

Notes to Instructors

- 1. All instructors teaching this course will use the same textbook.
- 2. Suggested Grading Scheme:

Scheduled Tests30%Homework20%Labs30%Project10%Comprehensive Final Exam10%

Grading Scale: A = 90 - 100

B = 80 - 89 C = 70 - 79 D = 60 - 69F = below 60

- 3. Recommended lab materials, sample tests and supplemental handouts are available from the program head.
- 4. Instructors should notify the program head at least a day in advance for any special accommodations or materials that will be needed for class.

